skip to main content


Search for: All records

Creators/Authors contains: "Jiang, Wentao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 20, 2024
  2. Many attractive photonics platforms still lack integrated photodetectors due to inherent material incompatibilities and lack of process scalability, preventing their widespread deployment. Here, we address the problem of scalably integrating photodetectors in a photonics-platform-independent manner. Using a thermal evaporation and deposition technique developed for nanoelectronics, we show that tellurium, a quasi-2D semi-conductive element, can be evaporated at low temperatures directly onto photonic chips to form air-stable, high-speed, ultrawide-band photodetectors. We demonstrate detection from visible (520 nm) to short-wave infrared (2.4 µm), a bandwidth of more than 40 GHz, and platform-independent scalable integration with photonic structures in silicon, silicon nitride, and lithium niobate.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Since the advent of the laser, acousto-optic modulators have been an important tool for controlling light. Recent advances in on-chip lithium niobate waveguide technology present new opportunities for these devices. We demonstrate a collinear acousto-optic modulator in a suspended film of lithium niobate employing a high-confinement, wavelength-scale waveguide. By strongly confining the optical and mechanical waves, this modulator improves a figure-of-merit that accounts for both acousto-optic and electro-mechanical efficiency by orders of magnitude. Our device demonstration marks a significant technological advance in acousto-optics that promises a novel class of compact and low-power frequency shifters, tunable filters, non-magnetic isolators, and beam deflectors.

     
    more » « less
  6. We demonstrate electrically pumped, heterogeneously integrated lasers on thin-film lithium niobate, featuring electro-optic wavelength tunability.

     
    more » « less
  7. Abstract

    Tuning and reconfiguring of nanophotonic components are needed to realize systems incorporating many components. The electrostatic force can deform a structure and tune its optical response. Despite the success of electrostatic actuators, they suffer from trade-offs between tuning voltage, tuning range, and on-chip area. Piezoelectric actuation could resolve these challenges, but only pm-per-volt scale wavelength tunability has been achieved. Here we propose and demonstrate compact piezoelectric actuators, called nanobenders, that transduce tens of nanometers per volt. By leveraging the non-uniform electric field from submicron electrodes, we generate bending of a piezoelectric nanobeam. Combined with a sliced photonic crystal cavity to sense displacement, we show tuning of an optical resonance by ~ 5 nm V−1 (0.6 THz V−1) and between 1520 ~ 1560 nm (~ 400 linewidths) within 4 V. Finally, we consider tunable nanophotonic components enabled by the nanobenders.

     
    more » « less